Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Anal Chem ; 94(42): 14761-14768, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2062140

ABSTRACT

Antibody drugs have been rapidly developed to cure many diseases including COVID-19 infection. Silicone oil is commonly used as a lubricant coating material for devices used in the pharmaceutical industry to store and administer antibody drug formulations. However, the interaction between silicone oil and antibody molecules could lead to the adsorption, denaturation, and aggregation of antibody molecules, impacting the efficacy of antibody drugs. Here, we studied the molecular interactions between antibodies and silicone oil in situ in real time. The effect of the surfactant on such interactions was also investigated. Specifically, the adsorption dynamics of a bispecific antibody (BsAb) onto a silicone oil surface without and with different concentrations of the surfactant PS80 in antibody solutions were monitored. Also the possible lowest effective PS80 concentrations that can prevent the adsorption of BsAb as well as a monoclonal antibody (mAb) onto silicone oil were measured. It was found that different concentrations of PS80 are required for preventing the adsorption of different antibodies. Both BsAB and mAB denature on silicone oil without a surfactant. However, for a low surfactant concentration in the solution, although the surfactant could not completely prevent the antibody from adsorption, it could maintain the native structures of adsorbed BsAb and mAb antibodies on silicone oil. This is important knowledge, showing that to prevent antibody aggregation on silicone oil it is not necessary to add surfactant to a concentration high enough to completely minimize protein adsorption.


Subject(s)
Antibodies, Bispecific , COVID-19 , Humans , Silicone Oils/chemistry , Surface-Active Agents/chemistry , Excipients/chemistry , Adsorption , Antibodies, Monoclonal/chemistry , Lubricants
2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1307382

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2), presents an urgent health crisis. More recently, an increasing number of mutated strains of SARS-CoV-2 have been identified globally. Such mutations, especially those on the spike glycoprotein to render its higher binding affinity to human angiotensin-converting enzyme II (hACE2) receptors, not only resulted in higher transmission of SARS-CoV-2 but also raised serious concerns regarding the efficacies of vaccines against mutated viruses. Since ACE2 is the virus-binding protein on human cells regardless of viral mutations, we design hACE2-containing nanocatchers (NCs) as the competitor with host cells for virus binding to protect cells from SARS-CoV-2 infection. The hACE2-containing NCs, derived from the cellular membrane of genetically engineered cells stably expressing hACE2, exhibited excellent neutralization ability against pseudoviruses of both wild-type SARS-CoV-2 and the D614G variant. To prevent SARS-CoV-2 infections in the lung, the most vulnerable organ for COVID-19, we develop an inhalable formulation by mixing hACE2-containing NCs with mucoadhesive excipient hyaluronic acid, the latter of which could significantly prolong the retention of NCs in the lung after inhalation. Excitingly, inhalation of our formulation could lead to potent pseudovirus inhibition ability in hACE2-expressing mouse model, without imposing any appreciable side effects. Importantly, our inhalable hACE2-containing NCs in the lyophilized formulation would allow long-term storage, facilitating their future clinical use. Thus, this work may provide an alternative tactic to inhibit SARS-CoV-2 infections even with different mutations, exhibiting great potential for treatment of the ongoing COVID-19 epidemic.


Subject(s)
COVID-19/prevention & control , Nanostructures/administration & dosage , SARS-CoV-2/drug effects , Adhesives/administration & dosage , Adhesives/chemistry , Adhesives/pharmacokinetics , Administration, Inhalation , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cryoprotective Agents/chemistry , Drug Storage , Epithelial Cells/metabolism , Excipients/administration & dosage , Excipients/chemistry , Excipients/pharmacokinetics , HEK293 Cells , Humans , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacokinetics , Lung/drug effects , Lung/metabolism , Lung/virology , Mice , Mice, Transgenic , Nanostructures/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Attachment/drug effects
3.
Carbohydr Polym ; 264: 118011, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1172080

ABSTRACT

Veklury™ by Gilead Sciences, Inc., containing antiviral drug, remdesivir (REM) has received emergency authorization in the USA and in Europe for COVID-19 therapy. Here, for the first time, we describe details of the non-covalent, host-guest type interaction between REM and the solubilizing excipient, sulfobutylether-beta-cyclodextrin (SBECD) that results in significant solubility enhancement. Complete amorphousness of the cyclodextrin-enabled REM formulation was demonstrated by X-ray diffraction, thermal analysis, Raman chemical mapping and electron microscopy/energy dispersive spectroscopy. The use of solubilizing carbohydrate resulted in a 300-fold improvement of the aqueous solubility of REM, and enhanced dissolution rate of the drug enabling the preparation of stable infusion solutions for therapy. 2D ROESY NMR spectroscopy provided information on the nature of REM-excipient interaction and indicated the presence of inclusion phenomenon and the electrostatic attraction between anionic SBECD and nitrogen-containing REM in aqueous solution.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Excipients/chemistry , beta-Cyclodextrins/chemistry , Adenosine Monophosphate/chemistry , Alanine/chemistry , Antiviral Agents/chemistry , Calorimetry, Differential Scanning , Freeze Drying/methods , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Molecular Docking Simulation , Nanofibers/chemistry , Powders , Solubility , Spectrum Analysis, Raman , X-Ray Diffraction , COVID-19 Drug Treatment
4.
Adv Drug Deliv Rev ; 174: 1-29, 2021 07.
Article in English | MEDLINE | ID: covidwho-1086728

ABSTRACT

Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.


Subject(s)
Biological Products/administration & dosage , Drug Delivery Systems , Proteins/administration & dosage , Animals , Biological Availability , Biological Products/chemistry , Biological Products/pharmacokinetics , Drug Carriers/chemistry , Drug Design , Drug Stability , Excipients/chemistry , Humans , Magnetic Resonance Spectroscopy , Proteins/chemistry , Proteins/pharmacokinetics
6.
Int J Pharm ; 588: 119689, 2020 Oct 15.
Article in English | MEDLINE | ID: covidwho-670401

ABSTRACT

A handful of singular structures and laws can be observed in nature. They are not always evident but, once discovered, it seems obvious how to take advantage of them. In chemistry, the discovery of reproducible patterns stimulates the imagination to develop new functional materials and technological or medical applications. Two clear examples are helical structures at different levels in biological polymers as well as ring and spherical structures of different size and composition. Rings are intuitively observed as holes able to thread elongated structures. A large number of real and fictional stories have rings as inanimate protagonists. The design, development or just discovering of a special ring has often been taken as a symbol of power or success. Several examples are the Piscatory Ring wore by the Pope of the Catholic Church, the NBA Championship ring and the One Ring created by the Dark Lord Sauron in the epic story The Lord of the Rings. In this work, we reveal the power of another extremely powerful kind of rings to fight against the pandemic which is currently affecting the whole world. These rings are as small as ~1 nm of diameter and so versatile that they are able to participate in the attack of viruses, and specifically SARS-CoV-2, in a large range of different ways. This includes the encapsulation and transport of specific drugs, as adjuvants to stabilize proteins, vaccines or other molecules involved in the infection, as cholesterol trappers to destabilize the virus envelope, as carriers for RNA therapies, as direct antiviral drugs and even to rescue blood coagulation upon heparin treatment. "One ring to rule them all. One ring to find them. One ring to bring them all and in the darkness bind them." J. R. R. Tolkien.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Nanostructures , Pneumonia, Viral/drug therapy , Betacoronavirus/metabolism , Blood Coagulation/drug effects , COVID-19 , Coronavirus Infections/prevention & control , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Stability , Excipients/chemistry , Excipients/pharmacology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Viral Vaccines/chemistry , Viral Vaccines/pharmacology
8.
Int J Pharm ; 583: 119396, 2020 Jun 15.
Article in English | MEDLINE | ID: covidwho-165298

ABSTRACT

This review presents the early history, the motivation, the research and some of the backstories behind the discovery and development of sulfobutylether-ß-cyclodextrin as a novel parenterally safe solubilizer and stabilizer. A specific sulfobutylether-ß-cyclodextrin with an average degree of 6.5 sulfobutyl-groups variably substituted on the 2-, 3- and 6-hydroxyls of the seven glucopyranose (dextrose) units of ß-cyclodextrin, is known by its commercial name, Captisol®. Today it is in 13 FDA approved injectables and numerous clinical candidates. It is also an example of a novel product discovered and initially preclinically developed at an academic institution.


Subject(s)
Excipients/chemistry , Pharmaceutical Preparations/chemistry , beta-Cyclodextrins/chemistry , Drug Stability , Excipients/history , History, 20th Century , History, 21st Century , Humans , Injections , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/history , Solubility , beta-Cyclodextrins/history
SELECTION OF CITATIONS
SEARCH DETAIL